A Constant Fraction Discriminator with Shape-Agnostic Fraction Triggering and Sub-ns Walk for the Solar Probe Analyzer for lons

Lydia Lee¹, Robert Abiad², Roberto Livi², Mia Mirkovic¹, Kenneth Hatch², Hilary Brunner², Davin Larson², Kristofer S.J. Pister¹

¹Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA ²Space Sciences Laboratory, University of California, Berkeley, USA

Poster No. A2P-19

Frontend Architecture

Constant Fraction Discrimination/Discriminator (CFD): The frontend triggers relative to a constant fraction of the input's peak. This produces an output edge whose timing is independent of the pulse's amplitude (zero timing walk).

Left: One possible scenario for radiation single event effect-induced lockout. The CFD output remains low, and the system never resets the peak detector until the chip is reconfigured.

<u>Right:</u> The single event transient (SET) detection/correction watchdog circuit and operation in the event of an otherwise lock-

- Additional peak detector in delay-versus-attenuate CFD:
- Guarantees a constant trigger fraction *f*, regardless of pulse shape.
- Upper bound on t_d extends from pulse duration (~1ns) to time between pulses (>100ns).

- inducing transient.
- (1) An SET causes the peak detector output to trigger the LED, starting the LED one-shot timer. (2) If the CFD has not registered an event after t_{stuck}, rst_stuck raises,
- (3) resetting the peak detector along with the LED (and CFD) outputs.

Results

Parameter	Values
Minimum Detectable Signal	8-10Me-
Maximum Event Rate	>10Mevents/s
Timing Walk (over 10× Amplitude)	601ps
Jitter	743ps _{rms}
Power	$2.9\text{mA} \times 3.3\text{V}_{\text{DD,IO}} (1.8\text{V}_{\text{DD,core}})$
Area	1.6mm × 1.7mm

Conclusions

Modified constant fraction discriminator architecture:

- Maintains theoretical zero timing walk of conventional CFDs
- \checkmark Trigger fraction stays at a constant f, irrespective of pulse shape
- Extended range for internal delay from pulse width to timing between \checkmark pulses

Designed and tested ASIC:

- ✓ Sub-nanosecond timing walk
- ✓ Sub-nanosecond RMS jitter
- ✓ Afterpulse rejection with an output monostable multivibrator
- SEU immunity with DICE latches and triple redundant gates
- ✓ Watchdog to detect and correct SEE-induced lockout
- ✓ Average current of 3.3mA from an on-chip 1.8V regulator

References

 [1] R. Livi et al., "The solar probe analyzer—ions on the parker solar probe," <i>The Astrophysical Journal</i>, vol. 938, no. 2, p. 138, 10 2022. [2] G. Fu, S. Dolinsky, J. Guo, and A. Ivan, "Improved walk-correction method for timing measurements in pet detector," <i>IEEE NSS/MIC</i>, 2014, pp. 1–3.
[3] T. Poikela et al., "Timepix3: a 65k channel hybrid pixel readout chip with simultaneous toa/tot and sparse readout," <i>Journal of Instrumentation</i> , vol. 9, no. 05, p. C05013, 5 2014.
[4] S. Xie, X. Zhang, Q. Huang, Z. Gong, J. Xu, and Q. Peng, "Methods to compensate the time walk errors in timing measurements for pet detectors," IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 4, no. 5, pp. 555–562, 2020.
[5] M. Simpson, C. Britton, A. Wintenberg, and G. Young, "An integrated cmos time interval measurement system with subnanosecond resolution for the wa-98 calorimeter," IEEE JSSC, vol. 32, no. 2, pp. 198–205, 1997.
[6] D. Abbaneo et al., "Design of a constant fraction discriminator for the vfat3 front-end asic of the cms gem detector," Journal of Instrumentation, vol. 11, no. 01, p. C01023, 1 2016.
[7] G. L. Engel, V. Vangapally, N. Duggireddi, L. G. Sobotka, J. M. Elson, and R. J. Charity, "Multi-channel integrated circuits for use in research with radioactive ion beams," <i>AIP Conference Proceedings</i> , vol. 1336, no. 1, pp. 608–613, 2011.
[8] M. Fang, N. Bartholomew, and A. Di Fulvio, "Positron annihilation lifetime spectroscopy using fast scintillators and digital electronics," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 943, p. 162507, 2019.
[9] H. Choi et al., "Study of timing performance parameters for a sipm-based digital positron annihilation lifetime spectrometer," Journal of Instrumentation, vol. 17, no. 12, p. C12007, 12 2022.
[10] M. Rudigier et al., "Fatima — fast timing array for despec at fair," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 969, p. 163967, 2020.
 [11] M. R. Motavalli, "Time measurement in mass spectrometry by dual circuits," Journal of The Institution of Engineers (India): Series B, Dec 2022. [12] G. Kramberger et al., "Timing performance of small cell 3d silicon detectors," <i>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i>, vol. 934, pp. 26–32, 2019.
[13] M. Ghioni, S. Cova, C. Samori, and F. Zappa, "True constant fraction trigger circuit for picosecond photon-timing with ultrafast microchannel plate photomultipliers," <i>Review of Scientific Instruments</i> , vol. 68, no. 5, pp. 2228–2237, 05 1997.
[14] T. Calin, M. Nicolaidis, and R. Velazco, "Upset hardened memory design for submicron cmos technology," IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 2874–2878, 1996.